Critical concentration of Oxygen and Water molecules for Continuous Low Friction of Hydrogenated Carbon Nitride Coatings

Kazuya Kuriyagawa* and Koshi Adachi

Department of Mechanical Systems Engineering, Tohoku University, Japan *Corresponding author: kazuya.kuriyagawa.r7@dc.tohoku.ac.jp

Extremely low friction (μ <0.05) obtained in friction system of Si₃N₄/CN_x:H in N₂ atmosphere with relatively low O₂ concentration and humidity has a limited life even if there is no difference in the presence of coating and/or transfer film. Such lifetime is drastically extended above a certain value of O₂ concentration and humidity in N₂ atmosphere, and in which extremely low friction continues up to 50,000 cycles set in this experiment. It suggests the possibility of a semi-permanent low friction system by continuous formation of low frictional interface due to tribochemical reaction.

Keywords: durability, carbon nitride coating, low friction, nitrogen atmosphere

1. Introduction

Hydrogenated carbon nitride (CN_x:H) is recognized as a coating capable of exhibiting extremely low friction (μ <0.05) in nitrogen gas (N₂) atmosphere by forming low friction interface due to tribochemical reaction ^[1]. For a wide range of applications of such extremely low friction, its durability is an important issue.

In this study, therefore, we focus on the effects of oxygen (O₂) concentration and relative humidity (RH) in the N₂ atmosphere, which are thought to affect the formation of low friction interface, and clarify the durability of such low friction of friction system with CN_x :H.

2. Methods

Ball-on-disk friction tests with Si_3N_4 ball and CN_x :H coated SiC disk were conducted under N_2 atmosphere. In N_2 atmosphere, O_2 concentration and RH were controlled in the range of $0.0001 \sim 0.05$ vol.% and $0.01 \sim 5$ %RH respectively. Applied load and sliding speed were 1 N and $0.05 \sim 0.25$ mm/s respectively.

3. Results and discussion

Fig. 1 shows typical friction property of Si₃N₄/CN_x:H under N₂ atmosphere when both O₂ concentration and RH are relatively low. Although it shows stable and extremely low friction (μ <0.05) after running-in, it transits to an unstable value of about 0.1 after a certain friction cycle. Even after the increase in friction, however, no film delamination of coatings or presence of transfer film is observed on interface. This suggests that there is a lifetime as a system for extremely low friction (μ <0.05), which is different from the lifetime of the coating that shows low μ value of 0.1~0.2.

Fig. 2 shows the effects of O_2 concentration and RH in N_2 atmosphere on such lifetime. In case of relatively low O_2 concentration and RH, the lifetime is seen in several thousand cycles. However, when the O_2 concentration and RH are above a certain value, the extremely low friction (μ <0.05) continues up to 50,000 cycles set in this experiment.

These results suggest that the durability of low friction increases sharply in N_2 atmosphere where O_2 and H_2O molecules are present above a certain concentration, and the tribochemical reaction for forming low frictional interface continues to occur.

4. Conclusions

- 1. Even if there is no difference in the presence of coating and/or transfer film, a lifetime which keeps extremely low friction (μ <0.05) before transition to the normal low μ value of 0.1~0.2 is existed.
- 2. There are critical values of O_2 concentration and relative humidity in N_2 atmosphere, above that extremely low friction (μ <0.05) continues up to 50,000 cycles set in this experiment.

Reference

 N. Yamada, et al., "Effect of Oxygen on the Selfformation of Carbonaceous Tribolayer with Carbon Nitride Coatings under a Nitrogen Atmosphere", Tribology letters, 1, 65, 2017, 1-11.

Fig. 2 Durability of low friction of $S1_3N_4/CN_x$: H as functions of (a) relative humidity and (b) O_2 concentration.